Groupe de travail 6

Risque : dispersion, réactivité et dépôt des radionucléides

Laboratoires leaders: PhLAM, PC2A

Participants: LASIR

Contacts

Objectifs

Matériel et méthodes

Etudes en cours et résultats

Sélection de publications

Objectifs

Caractériser les radionucléides susceptibles d’être émis dans l’atmosphère lors d’une situation accidentelle sur une installation nucléaire, mieux comprendre leurs mécanismes de dispersion dans l’atmosphère ainsi que leur impact sur la santé et l’environnement.

figcaption{ margin:0;}

Illustration : Pictures of the experimental devices used to characterize fission products and the computing facility used to run theoretical models (quantum dynamics)

Matériel et méthodes

Techniques de laboratoire:

  • Experimental devices to characterize fission products: specific experimental set-up, analytical techniques, metrology
  • Study and characterization of aerosols involving fission products and radionuclides

Access to the experimental facilities of the French Institute for Radiological Protection and Nuclear Safety (IRSN) Approches théoriques :

  • Theoretical models (quantum, dynamics) to describe radionuclides reactivity with atmospheric aerosols (dust, pollutants, photolysis products, etc); calculation of thermo-kinetic properties
  • Chemical – transport models
  • Clusters and scientific computing facilities

Etudes en cours

  • Modélisation théorique et expérimentale du comportement de l’iode et des composés halogénés dans l’atmosphère.
  • Développements de nouvelles méthodes quantiques relativistes corrélées pour les propriétés thermodynamique, spectroscopique et magnétique des radioéléments
  • Modélisation du comportement du ruthénium lors de son transport dans le circuit primaire
  • Favoriser le couplage de compétences en chimie théorique à l’étude de radionucléides d’intérêt

Illustration : Global strategy to describe iodine transport and reactivity in the atmosphere.

Sélection de publications

  • M. Šulka, L. Cantrel, V. Vallet, Theoretical Study of Plutonium (IV) Complexes Formed within the PUREX Process: A Proposal of a Plutonium Surrogate in Fire Conditions, J. Phys. Chem. A, 118 (2014) 10073, DOI: 10.1021/jp507684f.
  • V. Vallet, M. Masella, Benchmark binding energies of ammonium and alkyl-ammonium ions interacting with water. are ammonium–water hydrogen bonds strong?, Chem. Phys. Lett., 118 (2015), 168–173, doi: 10.1016/j.cplett.2014.11.005.
  • F. Miradji, S. Souvi, L. Cantrel, F. Louis, V. Vallet, Thermodynamic properties of gaseous ruthenium species, J. Phys. Chem. A, 119 (2015), 4961–4971, DOI: 10.1021/acs.jpca.5b01645.
  • K. Sulkova, L. Cantrel, F. Louis, Gas-phase Reactivity of Cesium-Containing Species by Quantum Chemistry, J. Phys. Chem. A, 119 (2015) 9373-9384, DOI: 10.1021/acs.jpca.5b05548.
  • A. C. Grégoire, J. Kalilainen, F. Cousin, H. Mutelle, L. Cantrel, A. Auvinen, T. Haste, S. Sobanska, Studies on the role of molybdenum on iodine transport in the RCS in nuclear severe accident conditions, Annals Nucl. Energy., 78 (2015) 117-129, DOI: 10.1016/j.anucene.2014.11.026
  • R. Maurice, F. Réal, ASP. Gomes, V. Vallet, G. Montavon, N. Galland. Effective bond orders from two-step spin-orbit coupling approaches: The I2, At2 , IO+, and AtO+ case studies. J. Chem. Phys., 142 (2015), 094305. DOI : 10.1063/1.4913738.
  • F. Miradji, F. Virot, S. Souvi, L. Cantrel, F. Louis, V. Vallet, Thermochemistry of ruthenium oxyhydroxide species and their impact on volatile speciations in severe nuclear accident conditions. J. Phys. Chem. A 120 (2016), 606–614. DOI: 10.1021/acs.jpca.5b11142.
  • S. Khanniche, F. Louis, L. Cantrel, I. Černušák. A DFT and Ab Initio Investigation of the Oxidation Reaction of CO by IO Radicals. J. Phys. Chem. A 120 (2016), 1737-1749. DOI : 10.1021/acs.jpca.6b00047
  • S. Khanniche, F. Louis, L. Cantrel, I. Černušák. A Theoretical Study of the Microhydration of Iodic Acid (HOIO2). Comput. Theor. Chem., 1094 (2016), 98-107. DOI: 10.1016/j.comptc.2016.09.010
  • K. Boguslawski, F. Réal, P. Tecmer, C. Dupperouzel, ASP. Gomes, O. Legeza, P. W. Ayers, V. Vallet. On the Multi-Reference Nature of Plutonium Oxides: PuO22+, PuO2, PuO3 and PuO2(OH)2Phys. Chem. Chem. Phys., 19 (2017), 4317-4329. DOI : 10.1039/C6CP05429C.
  • Y. Bouchafra, A. Shee, F. Réal, V. Vallet, ASP. Gomes. Predictive simulations of ionization energies of solvated halide ions with relativistic embedded Equation of Motion Coupled-Cluster Theory. Phys. Rev. Lett., 121 (2018), 266001.DOI : 10.1103/PhysRevLett.121.266001.
  • S. Kervazo, F. Réal, ASP. Gomes, F. Virot, V. Vallet. Accurate Predictions of Volatile Plutonium Thermodynamic Properties. Inorg. Chem, 58 (2019), 14507-14521. DOI: 10.1021/acs.inorgchem.9b02096.
  • F. Réal, V. Vallet, M. Masella. Improving the description of solvent pairwise interactions using local solute/solvent three-body functions. The case of halides and carboxylates in aqueous environment. J. Comput. Chem., 49 (2019), 1209-1218. DOI : 10.1002/jcc.25779.
  • L. Halbert, M. Olejniczak, V. Vallet, ASP. Gomes, Investigating solvent effects on the magnetic properties of molybdate ions (MoO42-) with relativistic embedding, Int. J. Quantum Chem., e26207 (2020). DOI: 10.1002/qua.26207, Journal Cover.
  • S. Taamalli, D. Khiri, S. Suliman, S. Khanniche, I. Cernusak, L. Cantrel, M. Ribaucour, F. Louis, Unraveling the Tropospheric Microhydration Processes of Iodous Acid HOIO, ACS Earth and Space Chem., 4 (2020) 92-100. DOI :10.1021/acsearthspacechem.9b00257.
  • S. Suliman, M. Pitonak, I. Cernusak, F. Louis, On the applicability of the MP2.5 approximation for open-shell systems. Case study of atmospheric reactivity, Comput. Theor. Chem., 1186, (2020), 112901. DOI: 10.1016/j.comptc.2020.112901.
  • D. Khiri, F. Louis, I. Cernusak, T. S. Dibble, BrHgO + CO : Analog of OH + CO and reduction path for Hg(II) in the atmosphere, ACS Earth and Space Chemistry, 4, 1777-1784, 2020, DOI: 10.1021/acsearthspacechem.0c00171.
  • R. Maurice, E. Acher, N. Galland, D. Guillaumont, F. Réal, E. Renault, J. Roques, ASP. Gomes,  B. Siberchicot, V. Vallet, Theoretical radiochemistry: from the interpretation to the prediction of experiments. L’Actualité Chimique, Société chimique de France, 460-461 (2021) 42-47.
  • L. Halbert, M. López Vidal, A. Shee, S. Coriani, ASP. Gomes. Relativistic EOM-CCSD for core-excited and core-ionized state energies based on the 4-component Dirac-Coulomb(-Gaunt) Hamiltonian. J. Chem. Theory Comput., In press, DOI : 10.1021/acs.jctc.0c01203.

back to the top